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CHAPTER 3
FORCES ON WALLS
Section |. Introduction

3-1. General . Retaining walls and flood walls accommodate a difference in
soil or water elevation over a typically short horizontal distance. On one

side of the wall, the driving side, lateral forces exceed those on the oppo-
site, resisting side; the force difference and resulting moment are accommo-
dated by forces and pressures developed along the base. Lateral forces may be
related to gravity, water seepage, waves, wind, and earthquakes. This chapter
presents methods for calculating pressures and resulting forces on the driving
and resisting sides of walls. These are necessary to calculate the magnitude
and location of the base resultant force for overturning and bearing capacity
analysis. They are also required for the design of the structural elements of
the wall.

3-2. Limit-Equilibrium Analysis . The forces and pressures acting on a wall

are in fact highly indeterminate. Static equilibrium equations are insuffici-
ent to obtain a solution for lateral forces; additional assumptions must be
incorporated in the analysis. For nonlinear materials such as soils, this is
commonly and conveniently done by assuming that a "limit" or failure state
exists along some surface and that the shear force along the surface corre-
sponds to the shear strength of the material. With these assumptions, equi-
librium equations can be solved. Hence, this approach is commonly called
“limit-equilibrium analysis." To assure that the assumed failure does not in
fact occur, a factor (safety factor or strength mobilization factor) is ap-

plied to the material strength. It should be noted that this solution ap-
proach differs significantly from that commonly used for indeterminate struc-
tural analysis, where stress-strain properties and deformations are employed.
This limit-equilibrium approach provides no direct information regarding de-
formations; it is implied that deformations are sufficient to induce the fail-
ure condition. Deformations are indirectly limited to tolerable values by
judicious choice of a safety factor.
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3-3. Relationship of Forces to Sliding Analysis . Forces calculated in accor-

dance with this chapter are not always equal to those calculated in a sliding
analysis (Chapter 4). The methods in this chapter are intended to produce
reasonable and somewhat conservative estimates of actual forces operative on
the wall. They can be used to perform a quick check on sliding stability as
described in paragraph 4-15. The sliding analysis for general cases (para-
graph 4-16) considers shear failure along the bases of a collection of inter-
acting free bodies (or wedges) that include both the wall and surrounding
soil. Sliding failure is prevented by applying a factor of safety on shear
strength equally on all segments of the failure surface. The lateral forces
calculated in the sliding analysis are a function of the sliding factor of
safety.
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Section Il. Earth Pressures and Forces

3-4. Cohesionless Materials

a. Active Earth Pressure . Cohesionless materials such as clean sand are
the recommended backfill for retaining walls. Large-scale tests (e.g.,
Terzaghi 1934; Tschebatarioff 1949; Matsuo, Kenmochi, and Yagi 1978) with
cohesionless (c = 0) backfills have shown that horizontal pressures are highly
dependent on the magnitude and direction of wall movement. The minimum hori-
zontal pressure condition, or active earth pressure, develops when a wall ro-
tates about its base and away from the backfil an amount on the order of
0.001 to 0.003 radian (a top deflection of 0.001 to 0.003h , where h is the
wall height). As the wall moves, horizontal stresses in the soil are reduced
and vertical stresses due to backfill weight are carried by increasing shear
stresses until shear failure is imminent (see Figure 3-1a).

b. Passive Earth Pressure . If a wall is moved toward the backfill,
horizontal stresses increase and shear stresses reverse direction, first de-
creasing and then increasing to a maximum at failure (see Figure 3-1b). Be-
cause the horizontal stress component along the shear planes is resisted by
both shear stress and vertical stress components, higher horizontal stresses
can be developed than for the active pressure case. Development of the maxi-
mum possible horizontal stress, or passive pressure, requires much larger wall
rotations than for the active case, as much as 0.02 to 0.2 radian. It should
be noted that the deformation required to mobilize one-half of the passive
pressure is significantly smaller than that required for full mobilization.

c. At-Rest Earth Pressure . If no wall movement occurs, the lateral
pressure condition is termed the at-rest pressure.

d. Lateral Earth Pressure Coefficient K . The ratio of the horizontal
effective stress to the vertical effective stress in a cohesionless soil mass
can be expressed by the earth pressure coefficient K . Typical relationships
between the K value and wall movements are shown in Figure 3-2. The value
of K can be obtained for active (K A) and passive (K P) conditions using

limit-equilibrium methods. Empirical equations are available for the at-rest
value (K 0) as described in paragraph 3-10.

e. Conditions Affecting Earth Pressure . For complicated backfill condi-
tions, at-rest earth forces can be estimated using the general wedge method
combined with factored soil strengths as described in paragraph 3-13. If the
mode of wall movement is other than base rotation, the earth pressure and its
distribution may differ considerably from any solutions herein and other anal-
ysis techniques are required (see paragraph 3-15g). Also, compaction of the
backfill behind a wall can produce horizontal pressures in excess of at-rest
pressures near the top of a wall as discussed in paragraph 3-17.
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3-5. Cohesive Materials

a. Strength Properties . So-called cohesive materials, typically fine-
grained soils such as clay, exhibit shear strength under zero confining stress
when loaded rapidly. The strength at zero confinement is expressed by the
parameter ¢ , or cohesion. Cohesive materials are usually saturated or
nearly saturated because their small pore diameter attracts capillary water.

When stress changes are imposed (such as by wall movement) the soil attempts
to change volume. If low permeability prevents volume change from keeping
pace with the external stress change, pressure changes are induced in the pore
water. What appears to be stress-independent strength (cohesion) is, for the
most part, the combined effects of frictional resistance between soil parti-

cles and induced pore pressure changes. Pore water tension at low stresses
permits vertical cuts in clay; however, such cuts eventually fail as negative

pore pressures dissipate and water content increases. Horizontal pressures in
cohesive materials are related to the soil's permeability and pore pressure
response during shear in addition to wall movement. Therefore they are time
dependent.

b. Use as a Backfill Material . It is strongly recommended that cohe-
sionless materials such as clean sands be used for wall backfill materials.
Cohesionless materials have more predictable properties than cohesive mate-
rials, are less frost susceptible, and provide better drainage. However,
there are certain instances (such as walls adjacent to impervious clay cutoffs
in flood-control structures) where clay backfills may be unavoidable.

c. Short- and Long-Term Analyses . Solutions are included herein for
earth pressures in the terms of the general case involving both the ¢ and
parameters. Where cohesive backfills are used, two analyses (short-term and
long-term) are usually required with different sets of strength parameters in
order to model conditions that may arise during the life of the wall.

Strength tests are further discussed in Chapter 2, Section V.

(1) Short-Term Analyses. These analyses model conditions prevailing
before pore pressure dissipation occurs, such as the end-of-construction con-
dition. For these analyses, unconsolidated-undrained (Q) test parameters are
appropriate. Often these tests yield a relatively high ¢ value and a low or
zero @ value. Calculations may indicate that the soil is in tension to sig-
nificant depths and exerts zero pressure on the wall; thus, the short-term
analysis alone will seldom govern wall design. However, the zone of theoreti-
cally negative soil pressure may correspond to cracking and should be assumed
to crack as described in paragraphs 3-15f and 4-18. Water entering these
cracks may exert significant horizontal pressure on a wall. Therefore, short-
term stability analyses should include a check of the effect of water pressure
in tension cracks.

(2) Long-Term Analyses. These analyses model conditions prevailing
after shear-induced excess pore pressures have dissipated. (Dissipation
herein includes negative pore pressures increasing to zero.) For long-term
analysis, consolidated-drained (S) test parameters are appropriate. These
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tests usually yield a relatively high ¢ value and a relatively low or zero
c value.

d. Overconsolidated "Swelling" Clay Soils . For highly overconsolidated

and/or "swelling" clay soils, lateral pressures may be developed in excess of
those calculated using drained or undrained strength parameters. These pres-
sures cannot generally be determined using limit-equilibrium techniques (see,
e.g., Brooker and Ireland 1965). The use of such soils around retaining walls
should be avoided.

3-6. Pressures in Soil-Water Systems . Soil grains are able to transmit shear
stresses; water cannot. Consequently, effective pressures in soil may differ

on horizontal and vertical planes but water pressures cannot. Effective soil
pressures are therefore separated from water pressures in calculations. |f

the value of K is established, horizontal effective stresses may be calculated

by multiplying the effective vertical stress at any point by the corresponding

K value (see Figure 3-3). To obtain the total horizontal pressure, the ef-
fective horizontal pressure is added to the water pressure. Where more than
one soil layer is present, vertical pressures increase continuously with depth

but the horizontal pressure diagrams may be discontinuous as shown. Combining
water pressures with effective earth pressures is further discussed in para-
graphs 3-15 and 3-18.

3-7. Design Earth Pressures and Forces, Driving Side

a. Use of At-Rest Earth Pressures . The driving side of a retaining wall
or flood wall is defined as that side on which soil and/or water exerts a
horizontal force tending to cause instability. Designers have often assumed
active earth pressure on the driving side because movements required to de-
velop active pressures are small. However, several reasons exist to design
walls for at-rest pressures. Because designs incorporate factors of safety,
walls may be quite rigid and pressures may be greater than active. Hydraulic
structures in particular are designed using conservative criteria that result
in relatively stiff wall designs. Walls founded on rock or stiff soil founda-
tions may not yield sufficiently to develop active earth pressures. Even for
foundations capable of yielding, certain experiments with granular backfill
(Matsuo, Kenmochi, and Yagi 1978) indicate that, following initial yield and
development of active pressures, horizontal pressures may in time return to
at-rest values. Another reference (Casagrande 1973) states that the gradual
buildup of the backfill in compacted lifts produces greater-than-active pres-
sures as do long-term effects from vibrations, water level fluctuations, and
temperature changes.

b. Estimation of Operative Pressures . Design analyses require an esti-
mate of the expected "operative" (nonfailure) pressures on the wall for over-
turning and bearing capacity analyses and structural design. Therefore, walls
should be designed to be safe against overturning and bearing failure for at-
rest earth pressure conditions, and structural elements should be designed
assuming at-rest earth pressures on the driving side. The lateral soil forces
calculated using the multiple wedge sliding analysis described in Chapter 4
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are in the at-rest pressure range when a safety factor of 1.5 is obtained.

c. Compaction and Surcharge Effects . Where significant compaction effort
is specified for the backfill, design earth pressures should be increased
beyond the at-rest values for depths above a “critical" depth as described in
paragraph 3-17. Where surcharges are expected above the backfill (in stock-
piles, rails, footings, etc.), the additional horizontal earth pressure due to
the surcharge should be determined as discussed in paragraph 3-16 and super-
imposed on the at-rest pressure diagram. Examples of these effects are given
in Appendix M.

3-8. Design Earth Pressures and Forces, Resisting Side

a. Background . The resisting side of a wall is defined as that side
where soil and/or water provide a lateral reaction tending to resist instabil-
ity. The maximum earth force that can be developed is the passive earth
force. However, for a wall in equilibrium, the actual resisting-side force
will typically be smaller than the passive force as the forces on the driving
side, base, and resisting side taken together must satisfy static equilibrium.
The resistances to the driving-side force provided by the resisting-side force
and the base shear force, respectively, are indeterminate. Allocation of the
total resistance between these two forces is judgmental.

b. Estimation of Passive Resistance . A conservative and convenient de-
sign approach is to assume the resisting-side force is zero for overturning
and bearing capacity analyses and for structural design. However, in some
cases, such as walls with relatively deep foundations, it may be desirable to
consider some lateral resistance for these analyses. To justifiably assume a
non-zero resisting-side force, the material must not lose its resistance char-
acteristics with any probable change in water content or environmental condi-
tions and must not be eroded or excavated during the life of the wall. If
such assumptions can be justified, at-rest conditions may be conservatively
assumed on the resisting side. Resisting-side pressures and forces generally
should not be assumed to exceed at-rest conditions when calculating the base
resultant force and location and when designing structural components. How-
ever, if the driving-side earth force exceeds the sum of the resisting side
at-rest earth force (if present) and the maximum available base shear force
calculated using unfactored shear parameters, the additional required resis-
tance should be assumed to be provided by additional resisting-side pressure.
In no case should the resisting-side earth pressure exceed one-half the pas-
sive pressure calculated using unfactored shear strengths for overturning and
bearing capacity analyses and structural design.

c. Horizontal Force Allocation . To summarize, the horizontal force
allocation for overturning analysis, bearing capacity analysis, and design of
structural components should be computed as follows:

(1) Calculate the at-rest effective earth force on the driving side
(paragraphs 3-10 through 3-13). Superimpose surcharge effects if present
(paragraph 3-16). Add water pressures, if present.
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(2) Assume that the resisting-side earth force equals zero or calculate
and apply the at-rest earth force on the resisting side of the wall, if justi-
fied (paragraphs 3-10 through 3-13). Add water forces if present.

(3) Assume that the horizontal component of the base resultant is equal
to the difference between the horizontal forces from (1) and (2).

(4) If the maximum available base shear force is exceeded, assume that
the remaining horizontal force is resisted by mobilizing a greater fraction of
passive pressure so long as not more than one-half the available passive force
is used. (This may occur where the resisting-side soil is strong relative to
the driving-side and base soils.)

d. Sliding Stability Check . Sliding stability should be checked using
the single or multiple wedge methods found in paragraphs 4-15 and 4-16,
respectively.

3-9. Design Earth Pressures and Forces on the Base

a. Calculation of Resultant Force on Base . The resultant force on the
base, its direction, and its location must be such that the wall is in static
equilibrium for the "operative" loads (see Figure 3-4). In Figure 3-4a, the
vertical component of the resultant is equal and opposite the summed weights
of the "structural wedge" and the horizontal component is equal to the differ-
ence of the driving-side and resisting-side forces. Figure 3-4b illustrates a
more complicated example including water and a sloping base with a key. The
vertical and horizontal components of the base uplift force are calculated
from base water pressures obtained from a seepage analysis. The remaining
vertical and horizontal forces required for equilibrium are provided by com-
ponents of the base shear force T and effective normal force N’ . An over-
turning analysis as described in Chapter 4 must be performed in order to
determine the effective normal force N’ and its location.

b. Computation of Base Pressures . The effective earth pressure on the
base is assumed to vary linearly and N’ is applied at the centroid of the
pressure diagram. When the resultant falls within the middle one-third of the
base, the effective base pressures ¢ are calculated by the following
equation:

NEEE

where
N’ = effective normal force on base of structure
B = width of base of structure

e = eccentricity of N' from center of base

3-9
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This is shown in Figure 3-5, a and b. If the resultant falls outside the
middle one-third of the base, i.e., e is greater than B/6 , as shown in
Figure 3-5c, the pressure distribution is triangular with a maximum pressure
equal to

T A
Ynax = 3\B - 2e [3-2]
The base will be in compression over a distance b from the toe computed as

b =

N

(B - 2e) [3-3]

Refer to Appendix N for example computations.

3-10. At-Rest Earth Pressure Equations

a. Horizontal Backfill . For the special case of a horizontal backfill
surface and a normally consolidated backfill (no compaction or other prestress
effects) the at-rest pressure coefficient K o can be estimated from Jaky's
(1944) equation

K0 =1 -~ gin ¢°' [3-4]

and the lateral earth pressure computed by

pO = Y'KOZ

where

0) drained internal friction angle

y' = effective unit weight (moist or saturated above water table,
submerged or buoyant below water table)

z = depth below surface of backfill along a vertical plane

b. Sloping Backfills . For normally consolidated sloping backfills,
results of experiments to measure K o are quite variable. The following

equation proposed by the Danish Code (Danish Geotechnical Institute 1978) is
recommended:

Kop = Ko (1 + sin B) [3-5]

o
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a. Simple wall, resultant in middle one-third of base

b. Flood wall with sloping
base

)
Gbmax

)6 =)

¢. Pressure for resultant outside
middle one-third

Figure 3-5. Base pressures
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Substituting Equation 3-4 in 3-5 gives:

KoB = (1 - sin ¢') (1 + sin B) [3-6]

and the lateral earth pressure computed by

Pe = Y'KOBZ

where [ is the slope angle from the horizontal. B is positive for a soil
layer that slopes upward and away from the structure. Values for K o and
KOB are given in Appendix E.

c. General Conditions . For walls with irregular backfill surfaces, non-
homogeneous backfills, surcharge loadings, and/or other complicating condi-
tions, empirical relationships for the at-rest pressure are not generally
available. For routine designs, an approximate solution for the horizontal
earth force may be obtained using Coulomb’s active force equation or the gen-
eral wedge method with values of ¢ and tan ¢ multiplied by a strength
mobilization factor (defined in paragraph 3-11). Because this is an empirical
approach, results will differ slightly from calculations using Equations 3-4
through 3-6 where companion solutions can be obtained. Appendix E includes a
comparison of K o values so obtained for both horizontal and sloping back-
fills. Figure 3-6 shows a comparison of Jaky’'s equation with Coulomb’s equa-
tion for a horizontal backfill.

d. Resisting Side . Jaky’s equation and the Danish Code equation may be
used to compute at-rest pressures for the resisting side for horizontal and
sloping soil surfaces, respectively. Example computations are shown in
example 7 of Appendix M and in Appendix N.

3-11. Strength Mobilization Factor

a. Definition . The strength mobilization factor (SMF) is defined as the
ratio of the assumed mobilized or developed shear stress T along an assumed

slip surface to the maximum shear strength T of the soil material at fail-

ure. If an appropriate SMF value is assumed and applied to ¢ and tan o,
it allows calculation of greater-than-active earth pressures using Coulomb’s

active force equation (paragraph 3-12) or the general wedge equation (para-

graph 3-13). Alternatively, the safety against sliding may be assessed by

calculating the average SMF along an assumed sliding surface from an equi-

librium analysis and comparing it to a recommended maximum value. These con-

cepts are illustrated in Figure 3-7. In equation form, the strength mobiliza-

tion factor may be expressed as:

SMF = — [3-7]
Te
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o
Figure 3-8. Mohr-Coulomb failure criterion
b. Developed Shear Stress . According to the Mohr-Coulomb failure
criterion (Figure 3-8) the shear strength on the failure plane is defined as
= ' —
Te = 0 tan b+ c [3-81
where
o’n = effective normal stress
¢,c = shear strength parameters of soil (where ¢ and c¢ in the above
equation are drained strengths ( ¢=¢ ,c=Cc) for long-term
analysis and undrained ( ¢@=0,¢c=S u) for short-term analysis of

cohesive materials).

The failure plane is inclined 45 + @2 degrees from the plane of the major
principal stress. For limit-equilibrium analyses to be valid, the assumed

slip surface must be inclined at this angle relative to the principal

stresses. In the Coulomb and general wedge methods, a plane slip surface is
assumed. Discontinuities in the backfill surface, surcharges, and wall fric-

tion all cause variation in the principal stress directions and induce
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curvature in the slip surface. Assuming that the plane slip surface approxi-
mation is valid and is properly oriented relative to the principal stresses,
the shear stress on it is:

T = SMF (c) + o; SMF (tan ¢) [3-9]

Thus, the shear stress on a presumed slip surface is taken to be a function of
the shear strength parameters, the effective normal stress, and the strength
mobilization factor.

c. Developed Shear Strength Parameters . Multiplying the shear strength
parameters (¢ and tan @) by the appropriate SMF reduces them to the
"developed" values (c d and tan (pd) assumed to be operative in equilibrium

conditions. The developed shear strength parameters, the actual shear
strength parameters, and the SMF are related as follows:

tan ¢d c

SMF =

olaf

tan ¢ [3-10]

To estimate at-rest pressures for design using Coulomb’s active earth pressure

equation or the general wedge equation, the SMF should be taken as 2/3
(0.667) . Ko values so obtained are compared with Jaky’'s equation in Fig-

ure 3-6. The Coulomb equation with an SMF of 2/3 is compared to the Danish

Code and Jaky equations in Appendix E. It should be noted that as the ratio,

tan [/tan @ , exceeds 0.56, the lateral earth force computed by the Coulomb or

general wedge equations using an SMF = 2/3 will be increasingly larger than

that given by computing the earth force using a K o given by the Danish Code

equation, for those conditions where the Danish Code equation applies. There-

fore, computing at-rest earth loadings using the Coulomb or general wedge

equations for a sloping backfill when tan Btan ¢ exceeds 0.56 will be con-
servative (see Appendix E).

3-12. Earth Force Calculation, Coulomb’s Equations

a. General .

(1) Coulomb’s equations solve for active and passive earth forces by
analyzing the equilibrium of a wedge-shaped soil mass. The mass is assumed to
be a rigid body sliding along a plane slip surface. Design (at-rest) earth
pressures and forces may be estimated using developed shear strength param-
eters (Equation 3-10) corresponding to an SMF of 2/3 in the Coulomb active
earth force equation. The Coulomb equations have the advantage of providing a
direct solution where the following conditions hold:
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(@) There is only one soil material (material properties are constant).
There can be more than one soil layer if all the soil layers are horizontal.

(b) The backfill surface is planar (it may be inclined).

(c) The backfill is completely above or completely below the water table,
unless the top surface is horizontal, in which case the water table may be
anywhere within the backfill.

(d) Any surcharge is uniform and covers the entire surface of the driving
wedge.

(e) The backfill is cohesionless, unless the top surface is horizontal,
in which case the backfill may be either cohesionless or cohesive.

(2) Although Coulomb’s equation solves only for forces, it is commonly
expressed as the product of a constant horizontal pressure coefficient K and
the area under a vertical effective stress diagram. Assuming the concept of a
constant K is valid, horizontal earth pressures can be calculated as the
product of K times the effective vertical stress. The variation of the
Coulomb solution from a more rigorous log-spiral solution is generally less
than 10 percent, as shown in Figure 3-9.

b. Driving-Side Earth Force

(1) The total active force P on a unit length of wall backfilled with

A
a cohesionless material (c = 0) is given by:

1 2

N S N T
P =3 sinBcosGKAh

A
and acts at an angle 6 from a line normal to the wall. In the above
equation (refer to Figure 3-10):

y' = effective unit weight (moist or unsaturated unit weight if above the
water table, submerged or buoyant unit weight if below the water table)

8 = angle of the wall face from horizontal (90 degrees for walls with a
vertical back face or structural wedge)

o = angle of wall friction
KA = active earth pressure coefficient
h = height of fill against gravity wall or height of fill at a vertical

plane on which the force is being computed

3-18
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where

K = S:i.n2 (6 + ¢) cos §
= - 2
* sin 6 gin (8 - §) [1 + \J51n (6 + &) sin (p - B)}

[3-12]

sin (8 - 8) sin (6 + B)

Examples 1 and 2 in Appendix M and the examples in Appendix N demonstrate the
use of Equation 3-12.

(2) When wall friction is neglected ( 0 = 0), Equation 3-12 reduces to:
sin2 (6 + ¢)
KA = 55 [3-13]
. 2 \Jgin ¢ sin (¢ - B)
sin” 6|1 + sin 8 sin (6 + B)
(3) For the case of is no wall friction ( d = 0) and a vertical wall

(6 = 90 degrees),

2
K = cos ¢

- [3-14]
A [1 + ‘Jsin ¢ sin (¢ - B)}2

cos R

(4) For the special case of no wall friction, horizontal backfill sur-

face, and a vertical wall, Coulomb’s equation for K A reduces to:
~Ll-sino 02 (5o _ 8 -
KA T T sin ¢ tan~ (45 2 [3-15]

which is identical to Rankine’'s equation for this special case.

(5) As stated in paragraph 3-11c and demonstrated in Figure 3-6 and
Appendix E, a developed ¢ angle computed by Equation 3-10 using an SMF of
2/3 can be used in Coulomb’s equation to compute an earth pressure coefficient
close to that given by the Jaky or Danish Code equations.
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(6) For the horizontal component of the earth force acting on a vertical
plane, with no wall friction, the term (1/sin 8 cos &) in Coulomb’s equation
is equal to unity. Thus, Equation 3-11 reduces to

- (L v o2
Pug = (2> K,y h [3-16]

(7) If total stress or undrained strength parameters are used and there
is a cohesion term ¢ it has the effect of reducing the active earth force
P

AH °
1 2 2c2
={= ; - YK — -
PAH (2> KAY h 2c KA h + 7 [3-17]
For a backfill with a horizontal surface, K given in Appendix H, para-

c
graph H-2c, equals Ky A The second term is the reduction in the active

force due to the effect of cohesion on the slip plane and the third term ac-

counts for the shortened length of slip plane due to the effect of a tension

crack. If the third term is neglected, and K is assumed constant with

depth, the active pressure can be obtained as the derivative of P AH with
respect to the depth from the top of the wall z :

=K Y z - 2¢VK, [3-18]

Refer to examples 5 and 8 of Appendix M for examples involving cohesion.

(8) Estimation of at-rest pressures using the SMF concept with
Coulomb’s equation may give unreliable results for medium to highly plastic
cohesive materials. If these materials cannot be avoided in the area of the
driving side wedge, the at-rest pressure should be taken as the overburden
pressure times as empirical K value, such as from Massarsch’s (1979) or
Brooker and Ireland’s (1965) correlation of K with the plasticity index.
Because of the number of uncertainties about the behavior of cohesive mate-
rials, a degree of conservatism should be exercised in the selection of the K
values. Also, the effects of short and long term conditions (paragraph 3-5c)
and compaction (paragraph 3-17) should be included in estimating the at-rest
pressure.
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c. Resisting-Side Earth Force

(1) The Coulomb and general wedge equations assume a plane slip surface.
However, wall friction effects cause the actual slip surface at failure to be
curved. For active pressure calculations, the magnitude of error introduced
by the plane surface assumption is not significant, as shown in Figure 3-9
(Driscoll 1979). Coulomb’s passive force equation, however, is grossly uncon-
servative where wall friction is present as shown in Figure 3-11 (Driscoll
1979). However, where d is less than about one-third ¢ , the error is
small. If wall friction is neglected, Coulomb’s equation is therefore accept-
able. The Coulomb passive pressure coefficient for the case of no wall fric-

tion ( & = 0) and a vertical wall ( 6 = 90 degrees) is:
2
K = cos” ¢ . r3-19]
® 1_\/sin¢sin (¢ + B)
cos B
For a horizontal backfill ( B = 0), this reduces to
1 + sin ¢ 2 ( o ¢) 1
= w—————— = tan  {45° + 5 )= — [3-20]
KP 1 - sin ¢ 2 K,

(2) If total stress or undrained strength parameters are used and there
is a cohesion term ¢ , it has the effect of increasing the passive earth

force p PH

Ppy = % K. Y'h% + 27K h [3-21]

By differentiating p with respect to the depth from the top of the

PH
resisting wedge z , the passive pressure may be obtained as:

Ppy = Kp¥'z + 2/E; c [3-22]

3-13. Earth Force Calculation, General Wedge Method

a. General . The general wedge method refers to a limit equilibrium
analysis of a set of assumed rigid bodies (soil and/or structural elements)
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termed wedges. The horizontal earth force on the driving or resisting side of
a retaining structure may be estimated by such an analysis employing properly
chosen strength parameters. Where the special conditions listed in para-
graph 3-12a(1) apply, the weight of the sliding mass and orientation of the
critical sliding plane are unique functions of the backfill geometry and soil
properties, and Coulomb’s equations provide direct solutions for the driving

and resisting earth forces. Where one or more of the variables in Coulomb’s
equation cannot be accommodated as a single value (such as the case with mul-
tiple soils where not all of the soil layers are horizontal, location of the

water table, irregular backfills or where nonuniform surcharges are present),

the critical inclination of the sliding surface and, in turn, the gravity

forces (weight plus surcharges) on the sliding mass must be solved in order to
calculate the horizontal earth force. In these cases, this requires a trial

and error solution using the general wedge equation.

b. Use in Practice . When used with unfactored soil strength parameters,
the general wedge equations yield the active and passive earth forces. When
c and tan ¢ are factored by an SMF value of 2/3, solution of the driving-
side wedge provides an estimate of the at-rest earth forces (see para-
graph 3-12). An SMF of 2/3 is not used to compute the resisting wedge force
for the overturning, bearing, and structural design of the wall since a larger
resisting force than is acceptable would be computed. See paragraph 3-8 for
the procedure recommended to determine the resisting force for overturning and
bearing capacity analyses and structural design of the wall.

c. Driving Side Earth Force, General Wedge Method

(1) Wedge Geometry and Forces. The geometry of a typical driving-side
wedge and its free-body diagram are shown in Figure 3-12. The angle of wall
friction and the shear force between vertical wedge boundaries are assumed to
be zero. The inclination of the slip surface o is that which maximizes the
earth force. Calculation of o is discussed in paragraphs 3-13c(2)
and 3-13c(4). If force equilibrium is satisfied, the forces on the wedge form
a closed-force polygon as shown in Figure 3-13. The equation for the effec-

tive horizontal earth force P EE exerted by a driving-side wedge on a wall or

an adjacent wedge is given by the general wedge equation as:

W+ V) (1 = tan ¢d cot a) tan ¢ U tan ¢, - c,L
P = N a” “a
EE 1 + tan d)d tan o cos a (1 + tan cbd tan a)

+H -H -P

3-25

[3-23]



EM 1110-2-2502
29 Sep 89

where

PEE = effective horizontal earth force contributed by wedge or wedge
segment

W = total wedge weight, including water

V = any vertical force applied to wedge

o = angle between slip plane and horizontal

U = uplift or buoyancy force acting on and normal to wedge slip plane
L = length along the slip plane of the wedge

H = any external horizontal force applied to the wedge from the left,
acting to the right

H, = any external horizontal force applied to the wedge from the right,
acting to the left

P.,,= internal water force acting on the side of the wedge free body (P
; ) w
is equal to the net difference of the water force for wedge seg
ments with water on two vertical sides as shown in Figures 3-12
and 3-13.)

The developed strength parameters tan @4 and c¢ 4 are as defined in para-

graph 3-11. Equation 3-23 is derived for failure occurring from left to
right. All values are positive in the directions indicated in Figure 3-12.
Refer to Appendix M for examples using Equation 3-23.

(2) Critical Value of Slip-Plane Angle.

(@ The critical value of a for a driving-side wedge with a horizontal
top surface and a uniform surcharge or no surcharge is:

¢
o = 45° + -2751- [3-24]

(b) For the special case of a backfill with a planar (flat or inclined)
top surface and a strip surcharge V , the following equation can be used to
compute the critical o value:

-1 1 1 2 [3-25]
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The above equation for o assumes that the backfill is completely above or
completely below the water table, but can be used when the water table is any-
where within the backfill with sufficient accuracy for design. The surcharge

V can have any arbitrary shape but must be contained entirely within the
driving wedge. The equations for c 1 and c, are

(i) For a cohesionless backfill without a strip surcharge:

¢, = 2 tan ¢d

_ tan B
c2—1—tan¢dtan8—<md>

3-28
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(i) For a cohesive or a cohesionless backfill with a strip surcharge:

4cd (tan ¢d + tan B) 4V tan B<l + tan2 ¢d>

Y(h +4d) - Y<h2 _ dz>
¢, = - < [3-28]

2 tan2 ¢d +

2cd(l - tan ¢d tan B) 2v tan2 E(l + tan2 ¢d)

T+ d) ¥ p

tan ¢, (1 - tan ¢, tan B) - tan B +
d d Y(hz_dc)

[3-29]

2 A

where

2cd(1 - tan ¢d tan B) 2V<1 + tan2 ¢d)
- [3-30]
Y(h +d)) Y(hz _ di)

A=tan¢d+

These equations when applied to a cohesive backfill are subject to the limita-
tions described in paragraph 3-12b(8). The derivation of these equations is
shown in Appendix G. Examples using these equations are shown in Appendix M.

(c) For irregular backfills, obtaining the critical inclination of the
driving-side slip surface may require a trial-and-error solution. As a first
approximation, the backfill surface may be bounded by two inclined lines
originating from the top of the wall and the value of o may be calculated
using an "average" B value between the two bounding lines (Figure 3-14), or
by introducing a surcharge as shown in Example 9 of Appendix M.

(3) Limitations of Critical Slip Plane Equations. The equations for ¢
and c, are valid except when the strip surcharge V is too large or when

the slope of the top surface is too great. The maximum value for the strip
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surcharge is determined by setting the denominator of the equation for ¢ 1 or
sy equal to zero and solving for V . This value is:

2 2
Yih™ - dc tan ¢d + 2cd(h - dc)(l - tan ¢d tan B)
ax = 2 [3-3
2(1 + tan® ¢ )
d
When V= Vmax the value of o is set by the location of the strip surcharge
as shown in Figure 3-15, and given by the equation
h-d + (S) tan B
-1
lo| = tan — [3-32]
Even when V < Vmax , a check should be made to be certain that the entire
strip surcharge lies on the top surface of the wedge as defined by the
2
calculated value of o . Also, when ¢ 1+ 402 <0 . o is indeterminate.
This is an indication that the slope of the top surface is too great to be
sustained by the developed strength parameters tan @4 and c¢ d- See
example 8 in Appendix M for a solution to this problem.
(4) Layered Soils. The wedge equations imply a single set of strength
parameters along the wedge base. For layered soils, the wedge must be divided
into wedge segments, each with its base in a single soil. The wedge base
inclinations o are theoretically different in every soil (Figure 3-16a);
calculation of an optimum solution (maximized earth force) for the set of a

values is tedious and cumbersome. Three approximate methods may be used:

(@ The critical inclination in each layer may be calculated according to
Equation 3-25 using the developed shear strength parameters for the soil along
the wedge base and using the slope angle B at the top of each wedge segment
(see Figure 3-16a).

(b) The wedge segment bases may be assumed to have a constant inclination
o through all materials and the critical value (corresponding to the maximum
driving side force) may be calculated by trial using Equation 3-23 (see
Figure 3-16b).

(c) Alternatively, the critical slip-plane angle may be calculated (for

each layer below the top layer) by using the procedure presented in para-
graph G-7 of Appendix G (see example 6 in Appendix M).
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If the surfaces of all layers are horizontal, the critical slip plane may be
determined using Equation 3-24.

(5) Surcharges. The wedge method incorporates surcharge effects into the
resultant earth force if the surcharge force is added to the wedge weight.
However, it is preferable to calculate horizontal pressures due to surcharges
separately for the following reasons:

(@ The presence of a nonuniform surcharge alters the principal stress
directions, increasing the curvature of the slip surface, and increasing the
error associated with assuming a plane surface.

(b) Stresses induced by surcharges are distributed throughout a soil mass
in a manner that may considerably alter the point of application and dis-
tribution of earth pressure as further described in paragraph 3-16. Limit-
equilibrium techniques and the earth pressure coefficient concept do not
accurately predict such distributions.

(c) The additional pressures developed on the wall depend on the amount
of wall movement and may be twice as great for nonyielding walls as for
yielding walls.

The intent of this manual is to consider walls to be relatively rigid and to

design for at-rest conditions. Therefore, pressures and forces due to non-
uniform surcharges should be calculated in accordance with paragraph 3-16,
adding the results to the pressures and/or forces obtained from Coulomb’s
equation or the general wedge equation. For the sliding analysis, surcharge
effects may be included directly in the wedge method weight calculations
because the sliding analysis considers only force equilibrium; thus, the point

of application of the forces does not matter. Examples 4 and 10 of Appendix M
demonstrate the calculation of horizontal pressures involving surcharges.

(6) Pressure Coefficients.

(@) Structural engineers are familiar with the use of Coulomb’s equations
(paragraph 3-12) for the determination of earth pressure coefficients and the
use of these coefficients in determining pressures and forces acting on
retaining walls. These equations suffer from several limitations as discussed
in paragraph 3-12a(1). The general wedge equation (Equation 3-23) is not
subject to any of the limitations of Coulomb’s equations and may be used to
solve for the lateral earth force on a wedge due to complicated geometry and
surface loading. If lateral earth pressure coefficients are derived from the
general wedge equation, these coefficients may be used in a rather simple
manner to solve complex earth pressure problems.

(b) Earth pressures can be calculated from general wedge method solutions
by assuming that pressures vary in a piecewise linear fashion and that the
slopes of the pressure diagrams are the product of densities and pressure
coefficients (K). The slopes may be considered the density of an "equivalent
fluid" loading the wall. These pressure coefficients are dependent on the
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problem geometry and are derived in Appendix H. It should be noted that pres-
sure coefficients (K values) below the water table may differ from those

above the water table in the same material as shown in Appendix H. One exam-
ple where the K value is different above and below the water table is the

case of a sloping backfill. Examples using pressure coefficients are shown in
Appendix M.

d. Resisting Side Earth Force, General Wedge Method

(1) Wedge Geometry and Forces. The geometry of a typical resisting-side
wedge and its free-body diagram are shown in Figure 3-17. The angle of wall
friction and the shear force between vertical wedge boundaries are assumed to
be zero. The inclination of the slip surface o is that which minimizes the
earth force. Calculation of o is discussed in paragraph 3-13d(2). |If force
equilibrium is satisfied, the forces on the wedge form a closed force polygon
as shown in Figure 3-17. The equation for the horizontal effective earth

force P EE exerted by a resisting-side wedge on a wall or an adjacent wedge
is:
W+ V(1 + tan ¢d cot @) tan o U tan ¢d - ch
PEE = 1 - tan ¢d tan o ~ cos o (L - tan ¢d tan a)

- H_L + HR - Pw [3-33]

where the terms are the same as for the driving-side wedge equation (Equa-
tion 3-23). Equation 3-33 is derived for failure occurring from left to
right. All values are positive in the directions indicated in Figure 3-17.

(2) Critical Value of Slip-Plane Angle.

(@) For a resisting-side wedge with a horizontal top surface, o can be
computed as follows:

o = 45° - == [3-34]

(b) The critical angle a for a resisting-side wedge with a planar (flat
or inclined) top surface, with no surcharge or with a strip surcharge V , is
given by the equation:

’ 2
-1 —c1 + c1 + 4c2

a = tan 5 [3-35]
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For a resisting-side wedge, the equations for c 1 and c, are
4e, (tan ¢, - tan B) 4V tan B(1 + tatn2 ¢ )
9 2 d d d
tan” ¢, + -
d vh h2
c, = n L [3-36]
2cd(l + tan @d tan B) 2v t:an2 B(l + tanzlt»d)
tan ¢d(1 + tan ¢d tan B) + tan B + 5 - 5
27 ry [3-37]
2cd(1 + tan ¢d tan B8) 2V(1 + t:.«m2 ¢d)
A= tan ¢, + + : [3-38]
d vh 2
vh

(3) Surcharges. The comments regarding surcharges in paragraph 3-13c(5)
relative to analysis of driving-side wedges also apply in general to
resisting-side wedges. However, surcharges on resisting-side wedges tend to
enhance stability and therefore it is conservative to neglect them in
analysis. If resisting-side surcharges are not neglected, it must be assured
that the surcharge loading will be in place for the condition analyzed.

(4) Pressure Coefficients. Earth pressures for the resisting side may be
calculated as equivalent fluid pressures in a manner similar to that for the
driving side. See paragraph 3-13c(6) and Appendix H for further discussion.

3-14. Earth Pressure Calculations Including Wall Friction

a. Driving Side . Friction between the backfill and wall, or on a plane
within the backfill, of up to one-half of the internal friction angle
(unfactored) of the backfill material may be used in the design.

b. Resisting Side . When wall friction is included in the analysis,
assuming the slip surface to be a log-spiral or other curved surface provides
lower and more reasonable values for the passive force and passive pressure

coefficient K = (see Figure 3-11). Although the angle of wall friction

should generally be taken as zero, it may be assumed greater than zero where
movement and settlement of the wall are expected and permissible. Figure 3-18
provides earth pressure coefficients for horizontal backfills based on the

work of Caquot and Kerisel (1948) and Shields and Tolunay (1973).
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Figure 3-18. Passive earth pressure coefficients

3-15. Distribution of Horizontal Earth Pressure

a. Superposition of Pressures . The distribution of total horizontal
pressure on the driving or resisting side is obtained by superposing the
distributions due to horizontal effective earth pressure, water, and sur-
charges. Where compaction efforts are specified, horizontal earth pressures
should be calculated in accordance with paragraph 3-17.

b. Soils Completely Above or Completely Below the Water Table . The
effective earth pressure may be assumed to have a triangular distribution when
all of the following conditions hold:

(1) The wall will not move or it will rotate about the base.
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(2) The water table is at or below the base of the wall or at or above
the top of the wall (submerged soil).
(3) Water conditions are hydrostatic (no seepage).
(4) There is only one soil material.
(5) There is no cohesion (c = 0).
(6) The backfill surface is plane (it may be inclined).
The distribution is given by:
? = K+ 3-39
|2 Y 2 [ ]
where
K = K0 on the driving side. K for the resisting side could vary
between K 0 and K0 or could be taken as zero
y' = the effective unit weight (total, saturated or moist unit weight if
above the water table, buoyant or submerged unit weight if below the
water table)
z = vertical distance measured down from the backfill surface
See Figure 3-19 for an example.
c. Partly Submerged Soils . Where the water table occurs between the top
and the base of the wall, and only one soil is present, the top portion of the
pressure diagram is a triangle given by Equation 3-39 and the bottom is a
trapezoid given by:
pr, = Kly 2z +y' (z - z)] [3-40]

where
Zy = depth to water table
v =(v - yv\) below the water table

An example is shown in Figure 3-20. See Appendix H where water table and
backfill surface are not parallel.
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d. Layered Soils . Where layered soils are present, the pressure diagram
is a triangle underlain by a series of trapezoids given by:

Phy = Ki(Pys ¥ Y52 [3-41]
where
Ki = horizontal earth pressure coefficient for the i th layer
p'Vi = vertical effective earth pressure at the top of the i th layer
yi = effective unit weight of the i th layer
z. = vertical distance measured down from the top of the i th layer

An example is shown in Figure 3-21.

e. lrreqular Backfills . Where the backfill is irregular, the pressure
diagram may be estimated by performing successive wedge analyses at incre-
mental depths from the top of the wall and applying the force difference from
successive analyses over the corresponding vertical area increment
(Agostinelli et al. 1981). Since this procedure is approximate, increasing
the number of calculation points does not necessarily increase accuracy. An
example of this procedure is shown in Figure 3-22. The pressure diagram may
also be estimated by the use of pressure coefficients (see para-
graphs 3-13c¢(6)) as shown in examples 7, 8, and 9 of Appendix M.

f. Cohesion Effects

(1) Where the backfill is horizontal and where cohesion is present, __its
theoretical effect is to reduce the driving side earth pressure by 2c K \é— A
for the entire depth of the soil layer (see Equation 3-18). This infers
tension in the soil to a "crack depth" d c where

2c
a = —= [3-42]
v,

Consequently there is zero load on the wall in this region. For sloping back-
fills, see Appendixes H and I. Where cohesion is present, a water-filled ten-
sion crack should be considered in the inferred tension zone. The maximum
crack depth using the unfactored c¢ value should also be checked. Where the
horizontal earth force is calculated from a pressure diagram that includes
negative pressure, the force reduction due to the inferred negative pressure

zone should be taken as zero. The pressure on the driving side should be
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computed using Equation 3-18 by setting the 2nd term equal to 0 and K
to K0 and using the pressure distribution as shown in Figure 3-23.

A equal

(2) For the resisting side, passive pressure theory indicates no tension
crack will form and the pressure would be calculated using Equation 3-22. The
pressure distribution for a cohesive soil on the resisting side of a structure
is shown in Figure 3-24. However, for operating conditions without movement,
a tension crack may form due to moisture loss reducing or eliminating the re-
sisting side pressure. See paragraph 3-8 for resisting pressure to be used
for design.

(3) Refer to guidance on use of cohesive materials in paragraph 3-5.

g. Wall Movement Effects

(1) Where the expected mode of wall movement is translation and/or rota-
tion about a point other than the base (such as for braced walls) the value of
K varies with depth and the horizontal earth pressure distribution will be
parabolic rather than triangular. Solution methods for such conditions are
less reliable than those for rotation about the base. Available methods in-
clude Rendulic’s procedure (Winterkorn and Fang 1975), Dubrova’s procedure
(Harr 1977), and a procedure given by Wu (1966).

(2) Where the expected mode of wall movement is translation and/or
rotation about a point other than the base, the force may be assumed the same
as that obtained for rotation about the base, but the point of application
should be taken at 45 percent of the wall height above the base.

3-16. Surcharge Effects

a. Uniform Surcharges . Where uniform surcharges (q) are present, the
vertical effective stress increases by the amount of the surcharge and the
horizontal earth pressure diagram is a trapezoid given by:

P, = K(a +Y'2) [3-43]

An example is shown in Figure 3-21.

b. Finite Surcharges

(1) Pressure Increase Due to Finite Surcharges. The distribution of the
horizontal pressure increase due to finite surcharges should be calculated
using experimentally modified elastic theory where expected (or allowable)
strains due to the surcharge are small. Pressures due to point and line loads
can be calculated using Figures 3-25 and 3-26, respectively. The resulting
pressures are about twice as great as would be obtained from either unadjusted
elastic solutions or limit-equilibrium solutions. This difference is due to
wall rigidity not considered in elastic or limit-equilibrium methods. Pres-
sures due to strip loads can be calculated using Figure 3-27. Pressures due
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/N

Kep YH

\~2c VK,

pPH = KP Y'Z + 2C \j Kp

Figure 3-24. Lateral pressure distribution; passive case,
soil with cohesion

to strip surcharge loads of more general shapes can be calculated by applying
the principle of superposition to these solutions; a pressure-intensity curve

of any shape can be modeled to any desired degree of accuracy as the sum of
point, line, or strip loads. Example computations involving surcharges are

shown in examples 4 and 10 of Appendix M.

(2) Force Due to Finite Surcharges. Point, line, or nonuniform (finite)
surcharge loads are supported by distribution or "diffusion” of stresses
within the backfill material. These result in a curved pressure diagram; the
point of application for the horizontal force resultant due to point or line
loads is given in Figure 3-28. Where surcharge pressure distributions of a
general shape have been modeled by superposition of these basic solutions, the
point of application is found by dividing the total moment due to the sur-
charge resultants by the sum of the surcharge resultants. Where surcharge
loadings are included in a wedge-method analysis, the difference in resultant
force due to the surcharge ( APH) should be applied at a different point on the

wall from the resultant due to backfill weight. An approximate method for
locating the line of action for a line load (Terzaghi 1943) is shown in Fig-

ure 3-29. An example using this approximate method is shown in example 4 of
Appendix M.

3-17. Earth Pressures Due to Compaction . The use of heavy rollers for com-
paction adjacent to walls can induce high residual pressures against the wall.
Although a reasonable degree of compaction is necessary to provide adequate

shear strength and minimize settlement, excess backfill compaction should be

avoided. Ingold (1979a,b) proposed a procedure for estimating lateral pres-

sures due to compaction that has been modified herein (Appendix J) to account
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Point Load
ah v
é .
z=| bh T
AP X
. .
% .
SECTION PLAN
(below)

Increase in horizontalpressure, AP, , on a
section through point load, V

2,2
APy, - (Y a’b for a > 0.4
? <h2 (@® + p% )3 °

2

APy, - (ogzsv ( b

4
he (0.16 + b? )3> for a <0

Increase in horizontalpressure, AP px , at
distance X from plane of load, V

o« = tan” (i)
ah

APy = AP, cos? (l.la)

Figure 3-25. Increase in pressure due to point load (after Spangler 1956)
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Line Load

Increase in horizontalpressure, APy,, at
depth bH due to line load, V/ft
at distance aH from wall.

2
Asz:<4V ( 2 aQ b2 for a > 0.4
7h /\ (@ + b% )2

Ap =< \ ( 0.203 b >
Hz = 016 + 522 for a < 0.4

Figure 3-26. Increase in pressure due to line load (after Spangler 1956)
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for non-yielding walls:

AP~ _%T_GD (B— sin B 00520{)

for ylelding walls,
(walls at failure:

Ap = Y (B- sin B cosZu)
T

B in radians

w
1]
_'_
0
3I
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Nl,\>,<
N
I
-+
0
:)I
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ke
e

Figure 3-27. Increase in pressure due to strip load
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Point Load, V

a APy Y

0.4 0.78 (V/h) 59 nh
0.5 0.60 (V/h) 54 h
0.6 0.46 (V/Nh) .48 h

Line Load, V/ft

for a < 0.4 APy =055V

for a > 0.4 AP, =064V

(a2 + 1)
a Y
0.4 0.60 h
0.5 0.56 h
0.6 0.52 h
0.7 0.48 h

Figure 3-28. Resultant forces, point and line
loads (after Spangler 1956)
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a'c'll bd
b'c' || bc
S,
/T ke bc is failure surface
L@"/ without surcharge
b (&' from horizontal

a'c' |l bd

% APH r/ e ° ]
/AT bc is failure surface
s %; without surcharge
- of is critical slip
b angle with surcharge

if o= o', AP= 0

AP, = P (%, V)= P (Y)

Figure 3-29. Approximate line of action for
line loads (Terzaghi 1943)
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for walls designed for at-rest conditions. The roller is assumed to exert a

line load of P Ib/ft obtained from the roller weight and drum dimensions;

double this value is recommended for vibratory rollers. The design pressure
diagram (Figure 3-30) is composed of three linear segments:

a. Starting at the top of the wall, the pressure increases linearly to a
value of p’ hm at a depth z o In this region, the horizontal stress is

increased during compaction due to the roller pressure but then the horizontal
stress is reduced by passive failure when the roller is removed.

b. The horizontal pressure is constant with depth from z or to z 5 and
is compaction induced.

c. At depth z the compaction-induced pressure equals the horizontal

2 ’
pressure due to soil weight (at-rest pressure). The pressure increases
linearly below this depth according to the equations in paragraph 3-15.

Compaction-induced pressures need only be considered for structural design.

For overturning, bearing, and sliding analyses, any wall movement due to
compaction-induced pressures would be accompanied by a reduction in the pres-
sure. As shown by the calculations in Appendix J, horizontal pressures due to
compaction may exceed the at-rest pressure in only the upper few feet unless
roller loads are particularly high. The effects of compaction are shown in
example 1 of Appendix M.

Section Ill.  Water Pressures

3-18. Pressure Calculations . In all cases, water pressures at a point may be
calculated by multiplying the pressure head at the point by the unit weight of

water (62.4 Ib/cu ft). As water has no shear strength, water pressures are

equal in all directions (K = 1.0). The pressure head is equal to the total

head minus the elevation head. The pressure head at a point is the height

water would rise in a piezometer placed at the point. The elevation head is

the height of the point itself above an arbitrary datum. Water pressures must

be added to effective earth pressures to obtain total pressures.

a. Static Pressures . For static water (no seepage) above or below the
ground surface, the total head is constant and the pressure head at any point
is the difference in elevation between the water surface and the point.

b. Water Pressures with Earth Pressure Equations . Where Coulomb or
at-rest equations are used to calculate the driving-side earth pressures for a
totally submerged soil mass, the buoyant soil weight ( y = Yeat - yv\) is used
in the earth pressure equations and the calculated effective earth pressures
are added to the calculated water pressures.

c. Water Forces with Wedge Analysis . The wedge method (Equations 3-23
and 3-33) uses total densities, uplift forces, and horizontal water forces on
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P is roller line load, Ib/ft+ (use twice roller
weight for vibratory rollers )

Figure 3-30. Design pressure envelope for nonyielding walls with
compaction effects
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the vertical sides of the wedge. Consequently, it gives the effective earth
force, and water forces must be added to obtain total forces (see example 3 in
Appendix M).

d. Water Pressures Where Seepage is Present . Where seepage occurs, the
pressure head at points of interest must be obtained from a seepage analysis.
Such an analysis must consider the types of foundation and backfill materials,
their possible range of horizontal and vertical permeabilities, and the effec-
tiveness of drains. Techniques of seepage analysis are discussed in EM 1110-
2-1901, Casagrande (1937), Cedergren (1967), Harr (1962), and other refer-
ences. Techniques applicable to wall design include flow nets and numerical
methods such as the finite element method and the method of fragments. An
example of pressure calculations using a flow net is shown in Figure 3-31.

Where soil conditions adjacent to and below a wall can be assumed homogeneous
(or can be mathematically transformed into equivalent homogeneous conditions)
simplified methods such as the line-of-creep method may be used. Simplified
methods are advantageous for preliminary studies to size wall elements or com-
pare alternate wall designs; however, designers should ensure that the final

design incorporates water pressures based on appropriate consideration of

actual soil conditions.

3-19. Seepage Analysis by Line-of-Creep Method . Where soil conditions can be
assumed homogeneous, the line-of-creep (or line-of-seepage) method provides a
reasonable approximate method for estimating uplift pressures that is partic-

ularly useful for preliminary or comparative designs. The line of creep may
underestimate uplift pressures on the base and thus be unconservative. There-

fore, final design should be based on a more rigorous analysis. The method is
illustrated in Figure 3-32. The total heads at the ends of the base (points B

and C) are estimated by assuming that the total head varies linearly along the

shortest possible seepage path (A'BCD’). Once the total head at B and C is

known, the uplift pressures U B and UC are calculated by subtracting the

elevation head from the total head at each point and multiplying the resulting
pressure head by the unit weight of water. The total uplift diagram along the
failure surface is completed in a similar manner. Where a key is present
(Figure 3-33), point B is at the bottom of the key and line segment BC is
drawn diagonally. Examples using the line-of-creep method are contained in
Appendix N.

3-20. Seepage Analysis by Method of Fragments . Another approximate method
applicable to homogeneous soil conditions is the method of fragments. It is
more accurate than the line-of-creep method. The soil is divided into a

number of regions or fragments for which exact solutions of the seepage con-
ditions exist. The head loss through each fragment is calculated by mathe-
matically combining the assemblage of fragments. The method assumes that
fragment boundaries are equipotential lines (contours of equal total head) and
provides an exact solution where this assumption is true (l-walls and single
sheet piles). Details of the method and instructions for the computer program
CFRAG (Appendix O) are presented by Pace, et al. (1984). Further background
on the method is presented by Harr (1962, 1977). Keyed bases should be
modeled by treating the key as a sheet pile and the soil below the base as a
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Headwater Side Tailwater Side
YN/ ‘-\\ < VSN ] EL.510
& A\ I -
v EL.507
EL.504
TSR
R 2 EL.50!
DATUM
EL. 0.0
Impervious
Pt. A Total Head: 510
Elevation Head: 510
Pressure Head: 0
Pressure: 0

Pt.B Total Head: 510 - (2/6 X510 - 507 )= 509
507 + (4/6)X 3 )= 508

Elevation Head: 50!
Pressure Head: 509 - 501 = 8

Pressure: (8 X62.4 )= 499.2 Ib/ft2

Figure 3-31. Water pressures from flow net
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Headwater Side Tailwater Side
/WAWA‘-\\ < TRSTRR . EL.5I0
An-- T A s
'\. ]
\. ' v EL.507
\ 1 -
\ ]
\\ ; EL.504
i ¥ -
N\ 1 // ’
\ = - <
ca . . © a - EL.50|
B C EL.=
Datum a 0.0
Length of Shortest Seepage Path: A'BCD!
(A') Total Head at A': 510 f+.
Elevation Head at A': 510 f+.
Pressure Head at A': 0 f+t.

(B) Total Head at B: 510 - | _(A'B ) [(5I0 - 507 )
(A'BCD")

Elevation Head at B: 501
Pressure Head at B = Total Head - Elevation Head

(C) Total Head at C: 510 - |_(ABC )| (510 - 507 )
( A'BCD")

Elevation Head at C: 501
etc.

Water Pressure: P, = X, * (Pressure Head )

Figure 3-32. Water pressure by line-of-creep method
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TR T INZN V7S

Figure 3-33. Seepage path for line of creep

type IV. Accuracy is improved by minimizing the number of fragments, not by
maximizing them to incorporate minor changes in geometry. Where water pres-
sure on the base of a wall is calculated by the method of fragments, the water
pressure along the driving-side and resisting-side wedge bases may be taken to
vary linearly as described in the preceding paragraph.

3-21. Seepage Analysis by the Finite Element Method The finite element
method provides a powerful tool to solve confined or unconfined seepage prob-

lems involving multiple soils with isotropic or anisotropic permeabilities.

It is particularly useful for evaluating the effect of drains and analyzing

walls with complicated foundation and backfill geometry. The WES computer
program for the finite element method is described by Tracy (1983). Pre- and
post-processors for the program are also available (Tracy 1977a, 1977b).

3-22. Uplift Calculations for Rock Foundations Seepage beneath flood walls
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founded on competent rock typically occurs in joints and fractures, not uni-
formly through pores as assumed for soils. Consequently, the assumptions of
isotropy and homogeneity and the use of two-dimensional analysis models com-
monly employed for soil foundations will generally be invalid. Total head,

uplift pressure, and seepage quantities may be highly dependent on the type,
size, orientation, and continuity of joints and fractures in the rock and the

type and degree of treatment afforded the rock foundation during construction.
Since any joints or fractures in the rock can be detrimental to underseepage
control, the joints and fractures should be cleaned out and filled with grout
before the concrete is placed, as discussed in paragraph 7-4g. For walls on a
rock foundation, the total seepage path can be assumed to be the length of the
base which is in compression. An example of a wall on a rock foundation is
shown in example 2 of Appendix N.

3-23. Effect of Drains . Water pressures for design analyses should consider
both working drains and blocked drainage conditions. Achieving an adequate

factor of safety for an analysis considering blocked drainage is usually not

good justification for omitting drains. Preferred practice is to provide

drains; lower factors of safety than specified herein may be justified where

blocked drainage assumptions are combined with rare and/or conservative load-

ing assumptions. All such deviations from recommended safety factors should

be supported by an assessment of expected drain reliability, and a justifica-

tion that the factor of safety is reasonable in light of the analyzed

conditions. Drains are discussed further in paragraphs 6-6 and 7-4.

3-24. Surge and Wave Loads

a. General Criteria . Wave and water level predictions for the analysis
of walls should be determined with the criteria presented in the Shore Protec-
tion Manual (U. S. Army Engineer Waterways Experiment Station 1984). Design
forces acting on the wall should be determined for the water levels and waves
predicted for the most severe fetch and the effects of shoaling, refraction,
and diffraction. A distinction is made between the action of nonbreaking,
breaking, and broken waves, where the methods recommended for calculation of
wave forces are for vertical walls. Wave forces on other types of walls
(i.e., sloping, stepped, curved, etc.) are not sufficiently understood to rec-
ommend general analytical design criteria. In any event, a coastal engineer
should be involved in establishing wave forces for the design of important
structures.

b. Wave Heights . Wave heights for design are obtained from the statis-
tical distribution of all waves in a wave train, and are defined as follows:

HS = average of the highest one-third of all waves

H1 = 1.67 H g - average of highest 1 percent of all waves

Hb = height of wave which breaks in water depth d b

c. Nonbreaking Wave Condition . When the depth of water is such that
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waves do not break, a nonbreaking condition exists. This occurs when the wa-
ter depth at the wall is greater than approximately 1.5 times the maximum

wave height. The H , Wwave shall be used for the nonbreaking condition.

Design nonbreaking wave pressures shall be computed using the Miche-Rudgren
Method, as described in Chapter 7 of the Shore Protection Manual (U. S. Army
Engineer Waterways Experiment Station 1984). Whenever the maximum stillwater
level results in a nonbreaking condition, lower stillwater levels should be
investigated for the possibility that shallow water may produce breaking wave
forces which are larger than the nonbreaking forces.

d. Breaking Wave Condition . The breaking condition occurs when the
steepness of the wave and the bottom slope on the front of the wall have cer-
tain relationships to each other. It is commonly assumed that a structure
positioned in a water depth d s will be subject to the breaking wave condi-

tion if d s < 1.3 H where H is the design wave height. Study of the break-

ing process indicates that this assumption is not always valid. The height of
the breaking wave and its breaking point are difficult to determine, but

breaker height can be equal to the water depth of the structure, depending on
bottom slope and wave period. Detailed determination of breaker heights and
distances for a sloping approach grade in front of the wall are given in the
Shore Protection Manual (U. S. Army Engineer Waterways Experiment Station
1984). Special consideration must be given to a situation where the fetch
shoals abruptly (as with a bulkhead wall submerged by a surge tide) near the
wall, but at a distance more than an approximate 0.7 wavelength away from the
wall, and then maintains a constant water depth from that point to the wall.

In this case waves larger than the water depth can be expected to have broken
at the abrupt shoaling point, leaving smaller, higher frequency waves to reach
the wall. Design breaking wave pressure should be determined by the Minikin
method presented in Chapter 7 of the Shore Protection Manual (U. S. Army Engi-
neer Waterways Experiment Station 1984). Breaking wave impact pressures occur
at the instant the vertical force of the wave hits the wall and only when a
plunging wave entraps a cushion of air against the wall. Because of this de-
pendence on curve geometry, high impact pressures are infrequent against
prototype structures; however, they must be recognized and considered in
design. Also, since the high impact pressures caused by breaking waves are of
high frequency, their importance in design against sliding and overturning may
be questionable relative to longer lasting lower dynamic forces. An example
involving a breaking wave condition is shown in example 7 of Appendix N.

e. Broken Wave Condition . Broken waves are those that break before
reaching the wall but near enough to have retained some of the forward momen-
tum of breaking. The design breaker height in this case (H b) is the highest

wave that will be broken in the break zone. Design wave forces for the height
Hb should be determined by the method presented in Chapter 7 of the Shore

Protection Manual (U. S. Army Engineer Waterways Experiment Station 1984).

f. Seepage Pressures . Seepage pressures are based on the elevation of
the surge stillwater level (paragraph 4-5).
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Section IV. Supplemental Forces

3-25. Wind Load . Wind loads should be considered for retaining and flood
walls during construction, prior to placing backfill. Wind loads can act any
time in the life of a flood wall. In locations subjected to hurricanes, a

wind load of 50 Ib/sq ft can be used conservatively for walls 20 feet or less
in height for winds up to 100 miles per hour (mph). In locations not sub-
jected to hurricanes, 30 Ib/sq ft can be used conservatively for the same
height of wall and wind velocity conditions. For more severe conditions, the
wind loads should be computed in accordance with ANSI A58.1 using a coeffi-
cient C f equal to 1.2.

3-26. Earthquake Forces

a. General . For retaining walls which are able to yield laterally during
an earthquake, the calculation of increased earth pressures induced by
earthquakes can be approximated by the Mononobe-Okabe pseudo-static approach
outlined below. In addition, the inertial forces of the wall, plus that
portion of the adjacent earth and/or water which is assumed to act with the
wall, should be included.

b. Mononobe-Okabe Analysis . This analysis is an extension of the Coulomb
sliding-wedge theory taking into account horizontal and vertical inertial
forces acting on the soil. The analysis is described in detail by Seed and
Whitman (1970) and Whitman and Liao (1985).

(1) Assumptions. The following assumptions are made by the
Mononobe-Okabe analysis:

(@ The wall is free to yield sufficiently to enable full soil strength
or active pressure conditions to be mobilized.

(b) The backfill is completely above or completely below the water table,
unless the top surface is horizontal, in which case the backfill can be parti-
ally saturated.

(c) The backfill is cohesionless.

(d) The top surface is planar (not irregular or broken).

(e) Any surcharge is uniform and covers the entire surface of the soil
wedge.

(H Liguefaction is not a problem.

(2) Equations. Equilibrium considerations of the soil wedge on the
driving and resisting sides lead to the following Mononobe-Okabe equations for
computing the active and passive forces exerted by the soil on the wall when
the soil mass is at the point of failure (total shear resistance mobilized)
along the slip plane of the Mononobe-Okabe wedge shown in Figure 3-34:
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For driving (active) wedges (Figure 3-34a),

Pae = -% KaeY(1 - k)h?

2(@p-Ww-0
Ky = cos® (@ )

O
D . .
2 sin( @+9dsin( ¢o-¥-pP)
cos W cos ecos(W+9+5)%l+,J cos (B -9y cos{ P+ 0 70)

For resisting (passive) wedges (Figure 3-34b),

P = 3 KoeV(L - k)h 2

Kop = cos?2 (@ -¥Y+0)
E

OOy

0
D R .
2 _ _|sin( @+ 9d)sin( @-W+p)
cos Wcos? B cos (W e+6)%[l J CoS (B~ By cos{ P~ 0 7 0)

P and P are the combined static and dynamic forces due to the driving

AE PE

and resisting wedges, respectively. The equations are subject to the same
limitations that are applicable to Coulomb’s equations. Definitions of terms
are as follows:

y = unit weight of soil

k = vertical acceleration in g's

height of wall

¢ = internal friction angle of soll

W=tan 0 Ky E]: seismic inertia angle
%1_k_— s

k, = horizontal acceleration in g's

0 = inclination of wall with respect to vertical (this definition of
is different from 08 in Coulomb’s equations)

o = wall friction angle

B = inclination of soil surface (upward slopes away from the wall are
positive)
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Slip plane

a., Mononobe-Okabe (active) wedge

Slip plane

b. Passive wedge

Figure 3-34. Driving and resisting seismic wedges, no saturation
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(3) Simplifying Conditions. For the usual case where k v o ,and 0
are taken to be zero, the equations reduce to:
cos’ (6 = 1)
K = 2 [3"48]
AR 2¥1+$1n¢sin(¢-v—6)
cos cos B cos ¥
2 (4 =¥
K _ cos 5 [3-49]
PE zwl$in¢sin(¢-w+8)
cos - cos B cos V¥
where
_ -1
Wy = tan (k h)
and
P_ = 12 K,_yh?
AE AEY
_ 2
PPE = 1/2 KPEyh
For the case when the water table is above the backfil, P AE and PPE must

be divided into static and dynamic components for computing the lateral
forces. Buoyant soil weight is used for computing the static component below
the water table, with the hydrostatic force added, and saturated soil weight

is used for computing the dynamic component (see paragraph 3-26c¢(3)).

(4) Observations. General observations from using Mononobe-Okabe
analysis are as follows:

(@ As the seismic inertia angle Y increases, the values of K AE and

KPE approach each other and, for a vertical backfill face ( 6 = 0), become

equal when W = ¢ .

(b) The locations of P AE and PPE are not given by the Mononobe-Okabe

analysis. Seed and Whitman (1970) suggest that the dynamic component APAE

be placed at the upper one-third point, APAE being the difference between

PAE and the total active force from Coulomb’s active wedge without the earth-

guake. The general wedge earthquake analysis described in paragraph 3-26c¢

places the dynamic component APAE at the upper one-third point also, but

computes APAE as being the difference between P AE and the total active
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force from the Mononobe-Okabe wedge. The latter method for computing APAE ,
which uses the same wedge for computing the static and dynamic components of
PAE , is preferred.

(c) Another limitation of the Mononobe-Okabe equation is that the con-
tents of the radical in the equation must be positive for a real solution to
be possible, and for this it is necessary that ¢ =2 WY + B for the driving
wedges and ¢ = W - B for the resisting wedges. This condition could also be
thought of as specifying a limit to the horizontal acceleration coefficient
that could be sustained by any structure in a given soil. The limiting condi-
tion for the driving wedge is:

w
IA

(1 - k) tan (¢ - B) [3-50]

and for the resisting wedge:

A

*n

(d) Figure 3-35a (Applied Technology Council 1981) shows the effect on

(1 - kv) tan (¢ + B) [3-51]

the magnification factor F T (equal to K AI:JK A) on changes in the vertical
acceleration coefficient k v Positive values of k v have a significant
effect for values of k v greater than 0.2. The effect is greater than
10 percent above and to the right of the dashed Iine. For values of k h of
0.2 or less, k y can be neglected for all practical purposes.

(e) K AE and FT are also sensitive to variations in backfill slope,

particularly for higher values of horizontal acceleration. This effect is
shown in Figure 3-35b.

c. General Wedge Earthquake Analysis . When the Coulomb wedge assump-
tions cannot be met, the following wedge analysis can be used. The equations
for the dynamic force given below for various conditions are simply the hori-
zontal acceleration coefficient multiplied by the weight of the wedge defined
by the critical slip-plane angle. See example 11 of Appendix M for sample
calculations.

(1) Assumptions. The equations for determining the critical slip-plane
angle for driving and resisting wedges subjected to a horizontal acceleration
are developed with the following assumptions:

(@ The shear on the vertical face of the wedge is zero.
(b) The shear strength along the potential slip planes in the soil has

not been mobilized to any extent, i.e., for static loading prior to an
earthquake.
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(2) Equations for Cohesionless, Dry Backfill Above the Water Table.
Driving and resisting forces for cohesionless, dry, sloping planar-surfaced
backfill below the water table where k v d,and 6 = 0 can be computed as
follows:

(@) Static Components. The static components for a driving and resisting
wedge are:

1 2
PA 5 KAYh [ ]

1 2
= = 3-53
PP 5 KPYh { ]

where
K = 1 - tan ¢ cot O tan o [3-54]
A 1 + tan ¢ tan o tan ¢ - tan B

_ {1 + tan ¢ cot & tan o 3-55
kp = (1 - tan ¢ tan &> (tan ¢ - tan é) [ ]

as derived in paragraph H-2 and H-3, Appendix H.

2
c, + cT + 4¢
a = tan_1< 1 21 2\> [3-561

2 (tan ¢ - kh)
1- 1T F k_tan 0

For an active wedge:

c [3-57]

tan ¢ (1 - tan ¢ tan B) - (tan B + kh)

€y = tan ¢ (1 + k,_tan 9) [3-58]

For a passive wedge:
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’ 2
- c, + 4fjcs + 4e
-1 1 1 2 [3-59]

o = tan 2

2 (tan ¢ - )
c, = kh [3-60]
1 1+ kh tan ¢

tan ¢ (1 + tan ¢ tan B) + (tan B - kh)
c. = [3-61]
2 tan ¢ (1 +k_tan ¢)

If k v > 0 , replace y with (1 - k V) Y.

(b) Dynamic Components. The dynamic component for each wedge is:

2
- = Yh -
APpg = APpp = Ky | 3 (tan a - tan B) [3-62]
(c) Total Driving Force. The total driving force is:
Pp = Pyt 0P, [3-63]
which is equal to:
=1 2 -
Pae = 7 Kag?® [3-64]
from the Mononobe-Okabe analysis.
The line of action for P AE May be found as:
h 2h
Pa (3) * APE (5‘)
TpE = P [3-65]
. AE
It should be noted that for large values of k ho which cause o to be small,
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PA can be negative causing the line of action of P AE to lie above the upper
third point.
(d) Total Resisting Force. The total resisting force is:
PPE = PP - APPE [3-66]
which is equal to:
_ 1 2
PPE = —2- KPEYh [3-'67]
from the Mononobe-Okabe analysis.
The line of action for P pgp Mmay be found as:
e (3) - 20 ()
¥ - P\3 PE \ 3 [3-68]
PE PPE
(3) Equations for Cohesionless Backfill with Water Table. Driving and
resisting forces for cohesionless, sloping, planar-surfaced backfill with
water table where k v d,and B = 0 can be computed as follows:
(@) Driving Force. The static components for a driving wedge are (see
Figures 3-36a and 3-37a):
P, =P, +P, ==KyYth-h) +ih [28Y(h - h) +K¥.h [3-69]
IS IRV Bl I s 7 Bg | 2Ky s T KVl
_ 1 2
Pws T2 Ywhs (3-70]
and the dynamic components are (see Figures 3-36a and 3-37a):
N ) b2 (v, - v b
= + = v ———————— -
PAE PAEl PAEZ kh 2(tan @ - tan B) + kh 2 tan Q [3-71]
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Figure 3-36. Seismic wedges, water table within wedge
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a, Driving wedge

20

b. Resisting wedge

Figure 3-37. Static and dynamic pressure diagrams, water table
within wedge
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giving a total force of:

= A -
PAE PA + Pws + PAE [3-72]
where
Vg = saturated unit weight of fill
y = moist unit weight of fill
Yy = buoyant unit weight of fill
Yo = unit weight of water
Kzl—tand)cota( tan o
A (1+tand)tana) tan a —tanB)
_ (1 - tan ¢ cot « tan a _
Kbi(l+tan<])tanoc) +(tana—tanﬁ l)yb}
and a is defined in Equation 3-56.
(b) Resisting Force. The static components for the resisting wedge are
(see Figures 3-36b and 3-37b):
P, =P, +P, ==Kyh-h) +=h |2KY(h-h) +KY.h [3-73
P~ Fpr TP T2 K s 7 By [ #pY(h = h) + Kyvyphy -731
1 2
Pws T2 Ywhs [3-74]
and the dynamic components are:
2
PPE - PPEI + PPEZ - kh 2 (tan o - tan B) + kh 2 tan « [3-75]
giving a total force of:
P = P_+ - A -
PE P Pws PE’E [3-76]
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where vy , Yo o ¥ and Y, &€ defined in paragraph 3-26¢(3)(a),

S 1
and
_<1+tan¢cot oc)( tan o )
KP-I-tancbtana tan o -~ tan B
1 + tan ¢ cot o tan o X
= 1+ 1
Kb 1 - tan ¢ tan o tan o - tan B Yy
and the equations for o are given in Equation 3-59.

(4) Equations for Cohesive Backfill with Water Table. Driving and re-
sisting forces for a cohesive, sloping, planar-surfaced backfill with water
table where k v d,and B = 0 can be computed as follows:

(@) Driving Force. The static components for the driving wedge are (see
Figure 3-38a):

1 2
Py =Py TP =37 KAY[(h - d4) hs]

1 |
+ 2 h [ZKAy(h ~da_-h)+ Kbybhs:]

and the dynamic components are (see Figure 3-38a):

2 2 2. 2
y(h - dc) (vg = ¥ hy

= = -+ —— it
APAE APAEl + APAEZ 1('h 2 (tan o - tan B8) kh 2 tan a

giving a total force of:

PAE = PA + PWS + APAE
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where

y = moist unit weight of fill

Yp = buoyant unit weight of fill
y.. = saturated unit weight of fill

Y. = unit weight of water

n

K = (1 - tan ¢ cot a) tan o
A 1 + tan ¢ tan a tan o - tan B
tan o _ Y
)El * (tan o - tan B 1) E
2
1 1¢ + g’cl + 4c2
2

1 - tan ¢ cot a
1 + tan ¢ tan o

%

a = tan

4e (tan ¢ + tan B)
y(h +d)

2 tan ¢ (tan ¢ - kh) +

1 A

2c(1l -

tan ¢ tan B)

tan ¢{(1 - tan ¢ tan B) - (tan B + kh) +

v(h + dc)

N

A

2¢(l - tan ¢ tan B)
y(h +d)

>
[

(1 + kh tan ¢) tan ¢ +

d = c/y
c cos o (sin a - tan ¢ cos a)
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Figure 3-38. Static and dynamic pressure diagrams, cohesive fill,
water table within wedge
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(b) Resisting Force. The static components for the resisting wedge are
(Figure 3-38b):
1

-1 -ny2 4+ 1 - -
PP = PPl + PPZ =3 pr(h hs) + 5 hsEZKPY(h hs) + Kbehs} + ZKCch [3-90]

1 2
Pws ) Ywhs [3-91]
and the dynamic components are (see Figure 3-38b):
Yhz
APPE B APPEl + APPE2 - kh 2 (tan a - tan B) [3-92]
giving a total force of:
Pog = Pp PWS + APPE [3-93]
where vy , Yo o Vg o and Y, ae defined in paragraph 3-26c¢(4)(a).
and
_f1 + tan ¢ cot a tan a ) _
Kp = (1 -~ tan ¢ tan a)(tan @ - tan B [3-94]
_ {1 + tan ¢ cot « tan o b _
Kb - (1 - tan ¢ tan a) El + (tan o - tan B l) Yt} [3-95]
/ 2
-c. + c, + 4e
o = tan"1 1 21 2 [3-96]
2 tan ¢ (tan ¢ - k‘n) + 4c (tan ¢ ;1 tan B)
¢, = - Y [3-97]
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tan ¢(1 + tan ¢ tan B) + (tan B - k) + 2¢(1 taﬁ ¢ tan B)
¢ = I . [3-98]
2¢(1 + tan ¢ tan B)
A= (1+ tan tan ¢ + -
k, tan ¢) tan ¢ h [3-99]
K = 1 . tan o 1
¢ 2sinqgcosa (1 -tan ¢ cos o) tan a - tan B [3-100]
d. Inertia Force of Wall . The inertia force of the wall, including that
portion of the backfill above the heel or toe of the wall and any water within
the backfill which is not included as part of the Coulomb wedge, is computed
by multiplying the selected acceleration coefficient by the weight of the wall
and backfill. This force is obtained by multiplying the mass by acceleration
as follows:
= g a
F=ma=ma{2})=—-w= W 3-1
(£) %" % H-1ot]
e. Hydrodynamic Force Due to Water Above Ground Level . Water standing
above ground can have its static pressure, acting against a wall, increased or
decreased due to seismic action. Figure 3-39 shows the pressures and forces
due to earthquakes for freestanding water. The dynamic force is given by
Westergaard's (1933) equation as:
_ {2 2 .
PE = (5) CEkhh [3-102]
where CE is a factor depending upon the depth of water, h , in feet, and
the earthquake period of vibration, T , in seconds. Westergaard's approxi-
mate equation for C E in kip-second-foot units is:
0,051
C, = [3-103]

E 2
J1-0.72 (m/1000m)
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Figure 3-39. Hydrodynamic forces for freestanding water
Normally, for retaining and flood walls, C g can be taken as 0.051. The
pressure distribution is parabolic, and the pressure at any point y below
the top surface is:
pp = Ck vhy [3-104]

The line of action of force P E is 0.4h above the ground surface.

f. Selection of Acceleration Coefficients

(1) Minimum Acceleration Coefficients. Minimum horizontal acceleration
coefficient values for the United States and its Territories are listed in
ER 1110-2-1806. In the absence of more accurate data, these values can be
used as a guide for determining the acceleration coefficient to be used in the
calculation of lateral earthquake forces on retaining and flood walls. As
discussed in paragraph 3-26b(3)(d) where the horizontal ground acceleration is
0.2 g or less, the vertical ground acceleration can be neglected for all
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practical purposes. When the vertical acceleration coefficient is included in
the analysis, it is normally taken as two-thirds of the horizontal accelera-
tion coefficient.

(2) Acceleration Coefficients Greater than 0.2. When the design accel-
eration coefficient exceeds 0.2, the Mononobe-Okabe analysis may require the
size of the wall to be excessively great. To provide a more economical struc-
ture, design for a small tolerable lateral displacement rather than no lateral
displacement may be preferable (Applied Technology Council 1981). A method
for computing the magnitude of relative wall displacement during a given
earthquake is described by Whitman and Liao (1985).

(3) Acceleration Coefficients for Walls Forming Part of a Dam. For re-
taining walls forming part of a dam, where failure of the wall would jeopar-
dize the safety of the dam, the selection of the acceleration coefficients for
the design of the wall should be consistent with those used for the stability
analyses and concrete design of the dam, where required (ER 1110-2-1806).

3-79

1110-2-2502
29 Sep 89



